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1. INTRODUCTION

In 1976 Lorentz [6] presented some new results and posed some open
questions concerning polynomials constrained to have a (possibly) high
order zero at one endpoint of an interval. In particular on the interval [0, 1],
the so called "incomplete" polynomials

m

X S
'\' a.x i
.:..... I

i=O

(1.1 )

have been investigated extensively [1, 3, 4, 6, 7, 9-14J. Generalizing this
notion of polynomials with endpoint constraints, several authors [5, 9J have
studied polynomials of the form

m

(x - 1)'1 (x + 1)'2 L aix i,
i=O

(1.2)

constrained at both endpoints of the interval [-1, 1]. The central theme in
these early investigations has been to examine a family of constrained
polynomials, of arbitrarily large degree, with zero of prescribed order at one
or both endpoints. Some of the results obtained thus far concern the uniform
approximation of continuous functions [1, 3,6, 13], growth estimates [4, 5,
10, 11], and the distributions of zeros [9].

Quite naturally, analogous questions arise for polynomials possessing an
interior constraint [9], that is, for polynomials on the intervals [-1,1]
having the form

m

(X-A)' L aixi,
i=O
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-1<A<1. (1.3)
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While results regarding the special case A. = 0 follow from single endpoint
considerations, the skewed cases have been absent from the literature. In this
paper we investigate two distinct but related extremal problems posed for the
polynomials of (1.3).

The outline of this paper is as follows: In Section 2 we introduce some
needed notation and state the two extremal problems. We study in Section 3
the extremal polynomials associated with Problem I. We state and prove our
main result in Section 4, concerning the extremal polynomials solving
Problem II.

2. NOTATION AND EXTREMAL PROBLEMS

As usual, for each nonnegative integer m we let 1tm denote the collection of
real polynomials of degree at most m. For each pair of nonnegative integers
sand m, we define

(2.1 )

where A. is a real number in [-1, 1]. Next let / be any real and continuous
function defined on the interval [-1, 1]. We set

The collection

11/11[-1.1] :=max{I/(x)l:xE [-1, Ill.

D:= {eE [-1,1]: I/@I=II/III-I.I)}

(2.2)

(2.3)

is called the set 0/ extreme points 0/ f. Next, for each integer m ~ 2, let
el <e2 < ... < em be a subset of D with the property that

i = 1, 2,..., m - 1. (2.4)

Such a subcollection is called an alternation set 0//0/ length m.
We now state our first extremal problem

PROBLEM I. For each real number A. in [-1, 1] and for each pair of
nonnegative integers sand m, determine

Es.m(A.) := min lll(X - A.y Ii (x - ail II :ai E IR, i = 1,2,..., mI (2.5)
i=1 [-I,I) \

(where if m = 0, we take nr=l (x - ail == 1).

Obviously the "free" real zeros of this extremal problem, that is, the
a" a2 , ... , am' are completely arbitrary. In Problem II, however, each is
confined to the interval [A., 1].
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PROBLEM II. For each real number A. in [-I, 1] and for each pair of
nonnegative integers s and m, determine

es.m(A.) := min \ II(X - A.)' n(x - a;) II :A. ~ a i ~ I, i = 1,2,..., m I (2.6)I 1=1 [-1.1) \

(where if m = 0, we take nr=1 (x - a i ) == I).

We remark that with the restriction of a i (i = 1,2,... , m) to the real
numbers, Problem I is a nonlinear extremal problem. If this restriction is
omitted, however, then Problem I becomes a linear weighted Chebyshev
problem. Unique polynomial solutions exist for this linearized problem and
since in this setting they are known to have all real zeros, there exist unique
monic polynomials minimizing (2.5). These polynomials will each be
denoted by P~~~(x) and hence

IIP~~~II[_I.I] = Es.m(A). (2.7)

Problem II is also a nonlinear extremal problem. It is easy to see that
extremal polynomials exist for this latter problem since the set lA, I]m is
compact in IR m

• We shall show in fact that these extremal polynomials are
unique, to be denoted by T~~~(x). Thus

II T~~~II[-I.ll = es.m(A). (2.8)

Finally, we shall show that Problems I and II are related in the following
way: For each choice of the three numbers s, m, and A, there exists a unique
integer k = 0, I,..., m for which

T (A) ( ) _ ptA) ( ).s.m X - s+k.m-k X ,

es.m(A) = Es+k.m_k(A).

3. EXTREMAL POLYNOMIALS FOR PROBLEM I

(2.9a)

(2.9b)

In this section we study the extremal polynomials solving Problem I. In
addition we detail certain properties of these polynomials which will
facilitate the results of Section 4.

THEOREM 3.1. For each real number A in I-I, I] and for each pair of
nonnegative integers sand m, there exists a unique monic polynomial of
precise degree n := S +m

P~~~(x) = (x - A)' p~~~(x) (3.1 )
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satisfying (2.7). Moreover, for m ~ 1, the function Ix - Als p~~~(x) has a (not
necessarily unique) alternation set of precisely m + 1 distinct points

(3.2)

for which

i = 0, 1,..., m. (3.3)

Conversely, let p(x) be a monic polynomial of degree at most m~ 1, and let
the function Ix - AIS p(x) have an alternation set of at least m + 1 points in
[-1,1]. Then

p(x) =p~~~(x). (3.4)

Since the arguments needed for this result are rather standard, we only
provide a sketch of the proof. Suppose the a;(i = 1,2,..., m) in Problem I are
not constrained to be real. Then Problem I becomes a linear weighted
Chebyshev problem. In this case it is known (cf. Walsh [15, p. 363]) that
there exist unique monic polynomials minimizing (2.5). In addition, since the
interval of interest to us here is [-1, 1], the zeros of these extremal
polynomials are real in [-1,1], making them at once solutions to the
nonlinear Problem I as orginally posed. For the equioscillation charac­
terization of P~~~(x) we refer the reader to Meinardus [8].

It was suggested in the preceding theorem that the alternation set
associated with the function Ix - Ais p~~~(x) need not be unique. This is true
for certain choices of the parameter A. To produce an example, we study the
incomplete polynomial P~-:ml)(x). Since this polynomial has all of its zeros in
[-1, 1 j, it is monotone for x <-1. Consequently, for each pair of
nonnegative intergers sand m, not both zero, there exists a unique real
number rs•m ~ 1 for which

(3.5)

(cf. [11]). Next, map the interval [-rs•m ' 1] linearly to the interval [-1,1]
and define As •m to be the image of -1, that is,

As•m := (rs,m - 3)/(rs,m + 1). (3.6)

Now for m~ 1, according to Theorem 3.1, the polynomial P~:-;':)(x) has
m + 1 alternation points in [-1, 1]. By instituting a change of variable, this
equioscillation property is preserved by the polynomial

P~~~)(2[(x-A)/(I-A)]-I),

640/37/3-3
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for each A in [-1,As.m]. Thus by the second half of Theorem 3.1, after nor­
malization,

P~~~(x) = [(1 - A)/2]s+m P~~~)(2[(x - A)j(1 - A)] - 1);

Es.m(A) = [(1 - A)j2]s+m Es,m(-1),

(3.7a)

(3.7b)

for each A in [-1,As,m]' In particular, for positive integers sand m, the
function

Ix - A IS p(As.m)(x)
s.m s,m

has two alternation sets, each of length m + 1. This behavior is illustrated in
Fig. 1.

We remark that while we do not have a general representation for As •m ,

numerical estimates are readily available.
Not only do the parameter values As,m provide instances for the nonunicity

of alternation sets for the functions Ix - Ais p~~~(x), but they playa key role
in the solution of Problem II. Thus in the remainder of this section we shall
develop certain relationships between the numbers As•m and the polynomials
P~~~(x). First we require

LEMMA 3.2 ([5, 11]). Let Q(x) be an arbitrary polynomial from
1ts,m(-1), not a scalar multiple of p~~~)(x). Then for each Ixl > 1,

/Q(X)/jl/QI/I-J,JI <IPt~)(x)I/Es.m(-1).

We make use of this lemma in the proof of

THEOREM 3.3. For each pair of integers s ~ 0 and m ~ 1,

(3.8)

(3.9)
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Proof Since llHl.m_l(-l)clls.m(-l), we can take Q(x)=P~+?m_l(X)
in Lemma 3.2. Then, when x = -rs•m' inequality (3.8) together with (3.5)
yields

(3,10)

Since. P~+~~m_l(X) is monotone and nonzero for x <-1 and since
IPS+l.m-l(-rHl,m-l)1 =EH1 .m- 1(-1), (3,10) implies that -rs+I,m_1 <
-rs,m' From the definition of As.m in (3,6), it follows that As,m <As+1,m-I'
Finally, it is a simple exercise to verify that rn,o = 3 and ro•n= 1, for
each n ~ 1, from which the upper and lower bounds of (3.9) easily follow.

In the last theorem of this section we determine the location of the least
nontrivial zero of P~:~(x) with respect to the parameter A. For the proof we
shall need the continuity result of

LEMMA 3.4 ([2]). Let {,utlf=1 be an infinite sequence of real numbers in
the interval [-1, 1] and suppose

!im ,u/ =,u.
1-+00

Then for each pair of nonnegative integers sand m,

(3.11 )

lim pl,./)(z) = pI,.) (z),
/

s,m s,m
-+00

for all z in C; (3.12a)

(3.12b)

Furthermore, this convergence is uniform on compact subsets of C.

THEOREM 3.5. For each pair of integers s ~ 0 and m ~ 1, write

m

P~~~(x) = (x - Ay n (x - a)S,m,A),
/=1

where

Then

A < a~s,m.A) for -1 ~ A<As+1,m-p

A= a~s.m,A) for A=As+1,m-l'

A> a~s.m,A) for As+1,m_1 <A~ 1.

(3.13)

(3.14)

(3.15a)

(3.15b)

(3.15c)
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That the zeros of P~~~(x) may be written as in (3.14) follows as a conse­
quence of (3.2) and (3.3). Before we proceed with the proof of Theorem 3.5,
we find it convenient to state the result of Lemma 3.6 separately.

LEMMA 3.6. Let s, m, A, and a\S,m,A) be as in Theorem 3.5.
A= a(S,m.A) implies that A= AI s+I,m-I'

Proof of Lemma 3.6. Assuming that A=a\S,m,AI, it follows that

P(A)( )_p(A) ( )s,m X - s+I,m-1 X.

Then

(3.16)

Based upon properties of P~~~(x) already discussed, the polynomial
P~~\.m_I(X) must attain its extreme values m + 1 times in [-1,1]. Since
m - 1 is the maximum number of critical points for P~~ I,m _ I(x) in
(-1, 1) - {A}, both x = -1 and x = 1 must be among these extreme points.
Moreover, since the "free" zeros of P~~I.m_I(X) are simple in (A, 1), this
polynomial also has an alternation set of m points in the interval [A, 1].

To simplify the notation in this proof we let IJ = As+ I,m-I' Now from the
definition of As,m in (3.6), these same properties may be attributed to the
polynomial

P~~\m_I(X)= [(I-IJ)/2]s+m P~".;-?,m_I(2[(x-IJ)/(I-IJ)]-I).(3,17)

That is, p~~\,m_I(X) attains its extreme values m + 1 times in [-1,1],
including x = -1 and x = 1, and has an alternation set of m points in the
interval [IJ, 1].

We claim that A = IJ and hence P~~ I.m _I = P~~ I,m _I(x). To this end we
define

Q(x) := [(I-IJ)/(I-A)p+m P~~I,m_I([(1 - A)/(1 -IJ)](X -IJ) +A);

R(x) := [(I-A)/(I-IJ)P+m P~~l,m_I([(1 -IJ)/(l - A)](X - A) + IJ).

(3.18)

(3.19)

It is easy to see that Q(x) and R (x) are monic polynomials in 1rs +I,m _I (,u)
and 1rs+I,m_I(A), respectively. From our preceding remarks, if IJ ~A, then the
monic polynomial Q(x) has an alternation set of m points in the interval
[-1, 1]. According to the converse statement in Theorem 3.1 then

Q(x) == P~~\m_I(X).

Similarly, when A~ IJ, we have

R(x) == P~~I.m_I(X),

(3.20)

(3.21 )

In either case we may write

p~~I.m_l(x)=«I-A)/(I-IJ»s+m p~~I.m_I([(1 -1J)/(1 - A)](X - A.) + IJ)·
(3.22)
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Since x = 1 is an extreme point for both P~~\.m -I (x) and p~~\ ,m -I (x), it
follows from (3.22) that

Es+ 1,m_I(A) = «I-A)/(1-,u»)'+m Es+1,m-I(,u)·

Now suppose,u <A; then it is easy to see that

(1-,u)(-I-A)/(I-A)+,u <-1.

(3.23)

(3.24)

Recalling the fact that IP~~I,m_l(X)1 >ES+J.m-,(,u) for all x < -1, we
combine (3,22) and (3.24) to obtain

Es+1,m_I(A) > «1 -A)/(I-,u»s+m Es+"m-t(,u).

Since this is a clear contradiction to (3.23), ,u ~ A. Similarly, if we suppose
that ,u >A, we again shall obtain a contradiction to (3.23). Consequently
,u = A, which was to be proved.

We now continue with the

Proof of Theorem 3.5. For -1 <,1,< As,m' it is known (cf. (3.7a» that

P~~(x) = [(1- A)/2]'+m P~~l)(2[(x - ,1,)/(1 - ,1,)]- 1).

Clearly for these A we have A<a1S ,m,A). Let n denote the collection of all
such A in the interval (-1, 1), that is,

n := {A E (-1, 1): ,1,< a1S ,m,A)}. (3.25)

While n is nonempty, we shall show further that it is open and is equal to
(-1, As+"m-,)'

To show that n is open, let AE n. We shall show that A is an interior
point of n. For p > 0, set

i= 1,2,... , m, (3.26)

and fix p sufficiently small so that P~~~(x) has precisely one zero in each C~'
i = 1,2,..., m, and so that A<a1S ,m,A) - p. Next let

e:= min min{IP(A)(z)l: z E C i } > O.
I';;i<;;m s,m p

(3.27)

For this value of e, we use Lemma 3.4 to determine [) >0 so that l,u - AI< [)
implies

i= 1,2,..., m, (3.28)
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(3.29)

Using (3.27) and (3.28), Rouche's Theorem implies that P~~~(x) has a simple
(real) zero in each C~, i = 1, 2,...,m. This fact, together with (3.29), implies
that Ii < a~s,m,,,) and hence Ii E n. Thus 12 is open.

Since 12 is the union of open intervals in (-1, 1), we let I represent any
one of these and define Ii := sup I. We shall show that Ii = As+ I.m-I and
hence that 12 = (-1, As+ I.m-I)' Since Ii fl 12, we have a~s,m.,,) ~ Ii. If the strict
inequality holds, then an argument such as that used to show that 12 is open
can be used to construct a neighborhood about Ii in which a~s,m.A) <A. Such
a neighborhood, however, would have a nonempty intersection with 12, which
is impossible. As a result, Ii = a~S,m,A). But as a consequence of Lemma 3.6,
this implies that Ii = As + I,m -1' from which it follows that
12= (-l,As+ I.m_ I). Thus for -l~A<As+I,m_1' we have a~s,m.A»A,

proving (3.15a).
Next suppose As+ I.m-I < A~ 1. Since Afl 12, we have a~s,m.A) ~ A. Now if

the strict inequality should hold, then, as indicated above, we can determine
a neighborhood about As+ I.m-I in which a~S,m'A) < A. As this contradicts the
fact that 12= (-l,As+l •m_ I )' we conclude that a~s,m·A)=A. The theorem is
now completely proved,

4. EXTREMAL POLYNOMIALS FOR PROBLEM 11

In this last section we state and prove the main result of this note
concerning the existence and uniqueness of extremal polynomials T~~~(x)

solving the nonlinear extremal Problem 11.

THEOREM 4.1. For each real number A in 1-1, 1] and for each pair of
nonnegative integers sand m, there exists a unique monic polynomial of
precise degree n := S + m

TIA) (x) = (x - A)S t(A) (x)s,m s.m , (4.1 )

with t~~~(x) having all its zeros in the interval lA, 1] and satisfying (2.8). For
m ~ 2, define the intervals

A (s.m) '- [ 1 ' Io .- - ,A..s + 1 ,m-1 ,

A (s.m) '- (A A . ]
i .- s+i.m-i' s+i+I,m-i-I'

A~,m):= (An,o' 1] = (0,1].

i = 1, 2,..., m - 1, (4.2)
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When m = 1, set A~s,m): = [-1,0] and A\s,m):= (0,1]. Then for m ~ 1,

233

~~~(x) = P~~\,m-k(X),

es,m(A.) = ES+k,m _k(A.),

(4.3a)

(4,3b)

for each A. in A~s,m), k = 0,1,..., m.

Before we prove Theorem 4.1, we present two lemmas which detail certain
characteristics of the extremal polynomials of Problem II. The first of these
is

LEMMA 4.2. For each number A. in [-1,1] and for each pair of integers
s ~°and m ~ 1, let T(x) denote any extremal polynomial of Problem II so
that II Till _I,ll = es,m(A.). For a unique integer k = 0, 1,..., m, we can write

T(x) = (x - A.y+k t(x), (4.4)

where t(x) is monic in 7Cm- k and t(A.) *" 0. If k <m, then there exist at least
m - k + 1 points eo <el < .. , < em_kfor which

i=O,I,...,m-k. (4.5)

Proof Assume k <m. We first show that t(x) has simple zeros in the
interval (A., 1). For convenience we write

m-k
t(x) = n (x - at),

/=1

(4.6)

where A. <a l " ... "am - k" 1. First suppose am- k= 1. Then for small e >°
the polynomial

Q(x; e) := T(x)«x - am_k+ e)j(x - am-k» (4.7)

is a competitor of T(x) and for e sufficiently small, IIQIII-I,II < es,m(A.),
yielding a contradiction. Thus am- k < 1. We next show that there can be no
multiple zeros. Suppose m - k ~ 2 and let j = 1,2,..., m - k - 1 be any
integer for which aj =aj + I' Then for e small and positive

Q(x; e) := T(x)«x - aj + e)(x - aj+ 1- e)j(x - aj)(x - aj+ I» (4.8)

is again a competitor of T(x). For e suitably small IIQlh-I,11 < es,m(A.),
yielding a contradiction. Consequently each zero of t(x) is simple in (A., 1).

We now show there exist at least m - k + 1 extreme points for the
polynomial T(x) in [-1, I]. It is easy to see that x = 1 is extreme for T(x),
or the polynomial of (4.7) w9u1d, for e sufficiently small, provide a
uniformly smaller extremal. Also, each of the m - k - 1 critical points of



234 MICHAEL A. LACHANCE

T(x) in (a 1 , am _k) are extreme points. If this were not true for the critical
point in some interval (ai' ai + 1), j = 1,2,... , m - k - 1, then e could be
chosen sufficiently small in (4.8) so that II Q(. ; e)lI r_I,ll <es,m(A.), which is a
contradiction. Finally, either x = -lor the critical point in (A, a l ) is extreme
for T(x), If not, for e suitably small, the polynomial

Q«x; e):= T(x)«x - a l - e)j(x - aJ)

can be made to satisfy IIQ('; e)lIr-I,11 <es,m(A), an impossibility. Thus T(x)
has at least m - k + 1 extreme points in [-I, IJ.

We now argue that these extreme points outlined above provide an alter­
nation set of length m - k + 1 for the function Ix - AIS +k t(x). Let eo be any
extreme point in [-1, a1) and label the m - k extrema in (a!, 1) by
~l < ~2 < ... <~m-k = 1. We shall show that these points satisfy (4.5). First,
since T(x) is monic and monotone for x >am_ k ,

Next, since for each j = 0, 1,..., m - k - 1, the points (,i and (,J+ 1 are
separated by a single simple zero of t(x), we have

j = 0, 1,..., m - k - 1.

This, together with the fact that

i=O,l, ...,m-k,

completes the proof of the lemma.

Next we prove

LEMMA 4.3. For each real number A. in [-1,1) and each pair of integers
s ~ 0 and m ~ 1, let T(x) be any extremal polynomial solving Problem II.
Thus 1/ Tllr-I.I) = es,m(A). If A.s+k,m-k <A~ l,for k = 1,2,..., m, then

T(x) = (x - A.y+k t(x),

where t E 7tm - k •

Proof Let k = 1 in the lemma and write

T(x) = (x - Ay t(x),

(4.9)

where t E 7tm. We must show that t(A) = 0 for As + I,m _I ~ A~ 1. Suppose this
is not the case and consider the functon q(x) defined by

Ix - Ais q(x) := Ix - AI5 (t(x) - p~~~(x)).
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Since both t(x) and p~~~(x) are monic polynomials of precise degree m,
q E 1rm-I' Furthermore, since T(x) is a competitor of the unique extremal
polynomial P~~~(x) in Problem I, it follows that e~~~ >Es.m(A) or
T(x) == P~~~(x). According to Theorem 3.5, the latter is impossible since T(x)
is zero free in [-I, A), while P~~(x) has at least a single zero in this interval.
Thus es.m(A) >Es.m(A). Lemma 4.2 guarantees, however, that IX-AISt(x)
has an alternation set of m + 1 points, forcing m sign changes for the
polynomial q(x). As this implies q(x) == ° or T(x) == P~~(x), an
impossibility, we have shown that t(A) = 0, proving the lemma when k = 1.

We now use induction on k. Suppose the lemma to be valid for
k = K <m, and suppose for As+K + I.m-K-I <A~ 1 that

T(x) = (x - Ay+K t(x),

where t E 1rm - K and t(A) *- 0. Then define q by

Ix - AIS+Kq(x) := Ix - Als+K (t(x) - P~~K.m-K(X».

Paralleling our argument for the case k= I, we note that qe1rm _ K _ I •

Moreover, either es.m(A) >Es.m(A) or T(x) == P~~)K.m-K(X), by the uniqueness
of the extremal polynomial for Problem I. Since Theorem 3.5 rules out the
latter possibility, we have es.m(A) >Es.m(A). Lemma 4.2, however, implies
that q(x) vanishes m -K times in [-1, I], forcing it to be identically zero.
But this means T(x) == P~~K.m-K(X), contradicting Theorem 3.5 and our
assumption that T(x) was an extremal polynomial for Problem II. Thus the
lemma is valid for k = K + 1~ m. This completes the proof.

Proof of Theorem 4.1. Since T~~~(x) = (x - Ay when m = 0, we shall
assume that m ~ 1. Let AE A k for some k = 0, 1,..., m, and let T(x) be any
extremal polynomial solving Problem II. Then according to the definition of
A k and Lemma 4.3, we can write

T(x) = (x - Ay+k t(x),

where t E 1rn - k. Now since 1rs+k.m-k(A) C 1rs.m(A), it is clear that

es+k.m-k(A) ~ es.m(A).

But because TE 1rs+k.m-k(A) and has its remaining zeros in [,1.,1],

eS+k.m-k(A) ~ II Till -1.11 = es.m(A).

Combining (4.11) and (4.12), it follows that

II TII[-I.ll = eS+k.m-k(A).

(4.10)

(4.11 )

(4.12)

(4.13)
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We now observe that T(x) and P~~~(x) are competitors of one another.
That is, according to Theorem 3.5 for AE A k, P~~\.m-k(X) has all of its
"free" zeros in [A, 1J and hence

eS+k.m-k(A) ~ IIP~~k,m-kll[-l,lJ =ES+k,m-k(A); (4.14)

while comparing Problems I and II,

(4.15)

Finally, combining (4.14) and (4.15), we conclude that T(x) == P~~k.m-k(X),

according to the characterization criteria of the unique extremal polynomial
for Problem I. This completes the proof of the theorem.
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